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ABSTRACT
In this paper we study, for the first time explicitly, the im-
plications of endowing an interested party (i.e. a teacher)
with the ability to modify the underlying dynamics of the
environment, in order to encourage an agent to learn to fol-
low a specific policy. We introduce a cost function which
can be used by the teacher to balance the modifications it
makes to the underlying environment dynamics, with the
learner’s performance compared to some ideal, desired, pol-
icy. We formulate teacher’s problem of determining optimal
environment changes as a planning and control problem, and
empirically validate the effectiveness of our model.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search—
Control theory ; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence— Multiagent systems

General Terms
Algorithms

Keywords
Teacher-learner, control theory, Kullback-Leibler Rate

1. INTRODUCTION
There are three general teaching paradigms applied by peo-
ple: teaching by demonstration, teaching by providing in-
centives, and teaching by modifying the underlying environ-
ment dynamics. While the first two have been successfully
mapped into intelligent agent models, the third one has yet
to be instantiated.

In more depth, teaching by demonstration has a teacher
provide example state-to-action mappings in order to show
the learner what a good policy would be. This approach
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has found great success in robotics [1]. However, most of
these works assume that the learner actually wishes to learn
the task, as well as a certain benevolence on behalf of the
teacher with respect to the learned task.

On the other hand, much of the work involving teaching
by using incentives has no need to assume that the teacher’s
and learner’s initial interests coincide. In particular, re-
search in this area has looked at ways in which a teacher
could encourage or convince a learner to follow some desired
policy by providing rewards or punishments. Recently, for
example, Zhang et al introduced a general framework they
call environment design [20]. In this, an interested party
attempts to influence the behaviour of an agent by making
limited changes to the agent’s environment. Although, in
general, this may include environment dynamics modifica-
tion, Zhang et al have concentrated on teaching by incen-
tive. In particular, they have allowed their interested party
to modify the cost function of an agent in a linear program-
ming example [20], or to modify the rewards of an agent
acting in an environment modelled as a Markov Decision
Problem (MDP) [22, 21]. However, these incentive based
approaches in their current form are not sufficiently flexible.
In fact, as one of our experimental domains demonstrates
(see Section 4), there exist environments where certain be-
haviours can not be enforced by the method of Zhang et
al.

In this paper we explicitly focus on the implications of al-
lowing the interested party (teacher, in our model) to modify
the dynamics of the environment, while leaving the reward
function of the agent alone. We term this process of teach-
ing behaviour cultivation. In more detail, we concentrate on
environments modelled by the learner as an MDP, and al-
low the teacher to tweak (i.e. make small changes to) the
environment dynamics and record the outcome within the
MDP model. The teacher’s goal is, therefore, to determine
the form and the degree of tweaking necessary to enforce a
specified behaviour upon the learner.

While our model may be cast as an example of environ-
ment design, we note that our instantiation differs signifi-
cantly from the particular cases studied by Zhang et al, and
therefore creates a separate line of study. In fact, repre-
senting the teacher’s task as a control problem is far more
reminiscent of the work by Banerjee and Peng [2]. In [2] an
additional assumption is made about the size of the learner’s
memory and the fact that the teacher-learner interaction is
based on a repeated normal form game. This enabled Baner-
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jee and Peng to enumerate all possible memory configura-
tions and use them as a system state space, casting the inter-
action between the teacher and its opponent as a planning
and control problem termed Adversary MDP. Solving this
problem allows the teacher to force its opponent to follow a
strategy which is most beneficial from the teacher’s utility
point of view. However, their method provides no formal
way of achieving a prespecifed behaviour of the learner, as
well as being limited to a finite set of memory configurations,
hardly a feasible situation even for a learning algorithm in
a simple repeated normal form game.

We believe that the power of our learning model is best
illustrated by the following real-world scenario. A parent
wishes to teach a child to ride a bicycle. The parent may
demonstrate by riding the bicycle. However, in practice, this
does not yield good results when the child attempts to re-
peat the task. It is also possible to promise an incentive,
be that a candy or a trip to the park. Unfortunately, al-
though increasing the child’s efforts, this does not facilitate
the learning process. The most practical thing to do, in
this case, is to modify the dynamics – add safety wheels to
the bicycle. Gradually raising the safety wheels constitutes
behaviour cultivation. It ultimately allows the child to accus-
tom to the complete range of motion possibilities and, even-
tually, ride an unabridged bicycle version. Another good
example, this time with multiple agents, would be the task
a coach faces when introducing a new player into his football
team. The new player has to be accustomed to this team’s
play-book (a set of attack and defence plans), but also the
rest of the team has to be trained to incorporate the unique
set of skills brought in by the new player. Here too, nei-
ther demonstration nor incentives work very well. Rather,
the coach has to create a sequence of drills where the new
player’s skills and the old play-book will be gradually inte-
grated. These drills do not possess the complete complexity
and dynamics of the real football game, instead they grad-
ually approximate the real game dynamics, and constitute
behaviour cultivation. Ultimately, a full scale football match
is played, where the coach no longer influences the game
rules or dynamics.

Against this background, the contributions of this work
are three-fold:

• We introduce a model whereby a teacher can modify
or tweak environment dynamics so as to cultivate some
desired behaviour in a learning agent. This is the first
time the behaviour cultivation teaching method is con-
sidered explicitly.

• We introduce a cost function for the teacher that nat-
urally incorporates and balances the teacher’s effort
and the deviation of the learner’s performance from an
ideal reference, that which the teacher is interested in.
Such balance is an important feature for multi-aspect
optimisation, and otherwise would have necessitated a
separate treatment.

• We instantiate our model with a particular learning
agent, and then show, empirically, that our model is
effective. Our behaviour cultivation method was able
both to speed up a normal learning process and solve
teaching tasks which are hard or impossible for other
methods.

It is important to note that our framework is not limited

to the learning agent we instantiated it for, the Policy Itera-
tion (PI) algorithm. Rather, we simply would like to increase
the immediate impact of introducing our framework by con-
necting it with an already widely applicable family of learn-
ing algorithms, those based on PI. An extremely popular
method of reinforcement learning [15], PI has a multitude of
variants to address both partial and noisy information about
the environment, which comprise one of the more practical
and well researched family of algorithms (see e.g. [6, 9, 12,
13, 7, 14]).

The rest of this paper is organised in the following man-
ner. In Section 2 we present our general model for behaviour
cultivation, and describe the cost function, which is based
on the Kullback-Leibler Rate, that we use. In Section 3
we instantiate our general model with a particular type of
learning agent, one that uses a Policy Iteration algorithm
to determine which policy it will follow. Using this instan-
tiation, we show, in Section 4, that our model is effective,
before concluding in Section 5 with a discussion of future
research directions.

2. INTERACTION MODEL
In this section we provide a high level description of the
problem and general framework. In the next section we pro-
vide a particular instantiation of this framework.

For easier exposition we will present our framework in
terms of a stochastic environment and two agents, a learner
and a teacher, however, our formalism can be easily modi-
fied to include an arbitrary fixed number of learning agents.
The learner acts within the environment, taking actions and
receiving feedback in the form of rewards, which depend on
the action taken and the current state of the environment in
which the agent finds itself. We assume that the learner is
rational and thus attempts to find a policy which describes
what action to take in each environment state, so as to max-
imise its expected reward. The teacher, on the other hand,
does not act in the environment, but rather acts on the
environment. In particular, the teacher has some desired
reference policy, π∗, that it wishes the learner to follow, but
is unable to directly force the agent to take any particular
action. Instead, it it is able to modify the environment’s
dynamics in order to cultivate the desired behaviour in the
learner. That is, the teacher’s actions are able to influence
the way the environment state changes in response to the
learner’s actions, and thus influence the policy of the learner.
This influence can range from minor effects on the transi-
tion probability in a single environment state to a principal
change of the environment response across all states and
learner’s actions. Dynamics modifications, or tweaks, come
at a cost, however, and thus the goal of the teacher is to
minimise the modifications it must make to the environ-
ment dynamics while at the same time ensuring that the
policy followed by the learner is close enough to the desired
reference policy.

We represent the problem with the tuple 〈S, A, c, γ, U, T 〉
where:

• S is the set of states,

• A is the set of actions available to the learner,

• c : S×A×S → R is the reward (or cost) function of the
learner. c(s′, a, s) is the reward received by the learner
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if it has applied action a ∈ A and the environment
moved from state s ∈ S to state s′ ∈ S,

• γ ∈ (0, 1) is a discount factor,

• U is the set of actions (modifications to the environ-
ment) that the teacher can apply where ut ∈ U is the
modification or tweak made at time t,

• T : S × A × U → Δ(S) describes the environment
dynamics where Tu(s′|s, a) ≡ T (s′|s, a, u) is the prob-
ability that the state will change from s to s′ if the
learner has applied action a ∈ A and the teacher chose
environment modification u ∈ U .

We assume that there exists a null modification u0 ∈
U , so that T 0 = Tu0 are the original dynamics of the
environment before any teacher-modifications. We will
use the term passive dynamics to refer to T 0 to high-
light the fact that it is unchanged by the teacher.

We assume that the learner modifies and updates its pol-
icy by using some iterative algorithm, such as value or policy
iteration. In between iterations, the teacher is able to ap-
ply a tweak or modification to the environment dynamics,
and thus, the learner faces a sequence of Markov Decision
Problems (MDPs) [10], given by tuples < S, A, U, Tut

, R >.
We assume that the learner is unaware of the teacher’s ac-
tions, and thus proceeds as if the sequence of MDPs were
homogeneous.

Assumption 1. At every stage the learner seeks an ac-
tion policy of the form π : S → Δ(A) that would produce the
highest expected reward if Tut

would persist indefinitely.1

Let xt represent all information and features that the
learner uses in determining its policy, and let πt = π(xt) :
S → Δ(A) be the policy that corresponds to that state. Ad-
ditionally, let π∗ be the ideal policy that the teacher desires
the learner to follow. At time t, the teacher incurs a cost,
Cost(πt, ut), which combines the difference between the ac-
tual policy being followed by the learner, πt, and the policy
desired by the teacher, π∗, with the amount of environmen-
tal modifications the teacher has had to make in order to
maintain the current dynamics, Tut

, compared to the ini-
tial environment dynamics, T 0. If we let xt = F (xt−1, ut)
denote one step of the learner’s policy-determination algo-
rithm and assume that x0, the original state of the learner,
is known, then it is possible to formulate the overall optimi-
sation problem faced by the teacher. In particular, it is:

min
ut

tmaxP
t=1

Cost(πt, ut)

s.t.

πt = π(xt)

xt = F (xt−1, ut).

This formulation of the teacher’s optimisation function is
fully generic. It does not explicitly specify the learner’s algo-
rithm beyond assuming that it is iterative. This formalism
thus captures both policy and value iteration algorithms,

1This assumption is explicit only if the learner actually has
access to the environment model. For most standard rein-
forcement learning algorithms this assumption would hold
implicitly.

both with given and learned environment models. It can
also capture the case where the learner is capable of trans-
fer learning [17]. In this scenario the learner’s state xt will
include structural knowledge gathered thus far from the in-
teraction with the environment.

Our teacher-learner interaction framework, as described,
is also generic with respect to the instantiation of the teacher’s
cost function, Cost(πt, ut). We argue that suitable cost func-
tions for this problem should incorporate information as to
what environmental modifications the teacher has performed
(i.e. the actions taken by the teacher), along with informa-
tion about how similar the policy of the learner is to the de-
sired policy of the teacher (i.e. how far the teacher is from
its goal). While any function which combines these features
in a meaningful way would work, in this paper we adopt a
specific cost function derived from the Kullback-Leibler Di-
vergence Rate. We describe our proposed cost function and
the reason behind its choice in more detail in the next sec-
tion.

2.1 Teacher s Cost Computation
In this section we describe our cost function, based on the
Kullback-Leibler Divergence Rate (KL Rate or KLR). We
first provide some background material on Kullback-Leibler
Divergence (KL Divergence) and KLR. We then describe
how our cost function is defined, and provide an argument
as to why it is appropriate for our setting.

Definition 1. Let p and q be probability distributions
over some discrete random variable. Then the Kullback-
Leibler (KL) Divergence of q from p is

DKL(p||q) =
X

i

p(i) log
p(i)

q(i)
.

Informally, KL Divergence measures the difference between
two probability distributions, while KL Rate extends KL
Divergence to Markov processes.

Definition 2. Let {X1
t } and {X2

t } be Markov Processes.
The Kullback-Leibler (KL) Rate is

KLR(X1||X2) = lim
n→∞

1

n
DLKL(P (X1 = xn)||P (X2 = xn)).

If the processes can be described by two conditional tran-
sition matrices, P and Q, where P (x′|x) (and respectively
Q(x′|x)) is the probability of transitioning from state x to
state x′, then

KLR(X1||X2) =
X

x

DKL(P (·|x)||Q(·|x))pstat(x)

where pstat is the stationary distribution of P [11].
Now, returning to our problem, let πt be the policy of

the learner at time t and let Tut
be the dynamics of the

environment after the teacher has applied tweak ut. If πt

was to be repeatedly used in the environment modified by
ut, this would result in a homogeneous Markovian process
defined by the transition matrix

Pt(s
′, a′|s, a) = Tut

(s′|s, a)πt(a
′|s′).

Similarly, we can define another Markovian process by the
transition matrix

P ∗(s′, a′|s, a) = T 0(s′|s, a)π∗(a′|s′).
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This is the ideal stochastic process over state-action pairs,
from the teacher’s perspective. In particular, it is formed
when the teacher’s desired policy, π∗, is followed by the
learner in the original, unmodified environment. That is,
the learner executes the teacher’s desired policy with no in-
tervention from the teacher.

Assuming that Pt and P ∗ are irreducible with respect to
S × A, we define our cost function as

Cost(ut, πt) = KLR(Pt||P
∗)

=
X
s,a

DKL
t (s, a)qt(s, a)

where

DKL
t (s, a) = DKL(Pt(·, ·|s, a)||P ∗(·, ·|s, a))

and qt(s, a) is the stationary distribution of Pt, so that
qt = Ptqt. Notably, the stationary distribution can be de-
composed (with a slight abuse of notation) to be qt(s, a) =
qt(a|s)qt(s) and then expressed by the following equations:

qt(s
′, a′) = πt(a

′|s′)qt(s
′) where

qt(s
′) =

X
s

T̃ut
(s′|s)qt(s) and

T̃ut
(s′|s) =

X
a

Tut
(s′|s, a)πt(a|s).

Incorporating our KLR-based cost function, the overall
generic Teacher Optimisation Problem (TOP) is depicted in
Figure 1.

Notice that this formulation retains complete flexibility
with respect to the specific algorithm selected by the learner
to optimise its policy. Nevertheless, to provide further in-
tuition and demonstrate the feasibility of the approach, in
the rest of this paper we instantiate the algorithm F to be
the Policy Iteration (PI) algorithm. As would occur with
any other learning algorithm, we will identify xt with a set
of variables sufficient to capture the learner’s computation
state at iteration t. We then will represent the change in the
computation state that occurs between two sequential itera-
tions of the algorithm in a functional form, F . The choice of
PI is, therefore, not dictated by its particularly convenient
properties, but rather by the number of applications it has
been used in. As we discuss in the next section, by using
PI as our example instantiation of TOP we intend to speed
up the dissemination and utilisation of our behaviour culti-
vation teaching method to practical applications. However,
before proceeding to this particular instantiation of TOP to
PI, we would like to remark upon the meaning of the use of
KLR and KL Divergence in our teaching problem.

As we have mentioned in the start of this section, KL
Divergence, DKL(P ||Q), informally measures the difference
between some factual distribution P and some desired dis-
tribution Q.2 As expected, DKL(P ||Q) is minimised exactly
when P = Q, that is, DKL(P ||P ) = 0. Importantly, it com-
pares two distributions, rather than distribution properties,
such as the mean or variance which, for historical reasons,
have been more commonly used.3 In our problem, the de-
sired distribution is P ∗(s′, a′|s, a) which arises if the learner

2Note that while KL Divergence is often called the distance
between two distributions, it is, in fact, not a true distance
metric.
3Consider, for instance, the optimality criteria of MDPs: the
expected accumulated reward. Rather than being concerned

arg min
ut

tmaxP
t=1

P
s,a

πt(a|s)qt(s)D
KL
t (s, a)

s.t.
πt = π(xt)

xt = F (xt−1, ut)
x0 is given

DKL
t (s, a) =

P
s′,a′

Tut
(s′|a, s)πt(a

′|s′) log
Tut

(s′|a,s)πt(a
′|s′)

T0(s′|a,s)π∗(a′|s′)

qt(s
′) =

P
s

T̃ut
(s′|s)qt(s)

T̃ut
(s′|s) =

P
a

Tut
(s′|s, a)πt(a|s)

Figure 1: The complete generic TOP

follows the teacher’s desired policy with no environmental
tweaks required. By using KLR as the cost function, we are
able to assign costs to the complete variety of possible long
term deviations from P ∗.These deviations may arise from
either the environmental tweak made by the teacher, or by
the learner following a non-desired policy, or some combi-
nation of both, and thus our cost function balances these
appropriately.

3. TOP WITH POLICY ITERATION
In this section we discuss how we instantiate our general
model when the learner is using a policy iteration algorithm.
As we have described in the previous section, the framework
instantiation process has two stages. We first identify the
sufficient set of variables to describe the computation state
of the learning algorithm. We then represent the algorithm’s
iteration that transforms this state in a functional form.

Now, the standard policy iteration (PI) algorithm is an
iterative algorithm that operates over an explicitly given
MDP[10]. It consists of two principal stages:

Policy Evaluation where the algorithm computes the re-
ward of the agent if it applies its current policy in
the given MDP. Specifically, given the policy of the
previous iteration, πt−1, the value function Vt(s) for
that policy is computed, where Vt(s) represents the
expected total discounted reward that can be achieved
if the environment starts at state s and the agent fol-
lows πt−1.

Policy Improvement where the value function of the cur-
rent policy is used to guide the computation of the next
stage policy. Commonly, it is a policy, πt, optimal with
respect to the current value function, Vt(s).

Since its original introduction, both stages of the algo-
rithm have been refined to allow for partial knowledge of the
domain. For instance, the value function can be estimated,
rather than computed, in environments where a direct com-
putation is too complex or impossible due to poor modelling
by the learner (see e.g. [12, 6, 7]). Another extension has
been the introduction of safety features into the calculations
of the new policy (e.g risk aversion [5, 8, 13]). Such modifi-
cations have been extensively used, particularly in robotics,

with the entire shape of the obtainable reward distribution,
it only concentrates on the expectation, necessitating further
solution augmentation to account for requirements such as
risk-aversion.
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leading to more and more advanced policy iteration algo-
rithms (see, for example, [14, 7]). Hence, by making the
basic PI method our study subject in this paper, we intend
to impact a large swathe of applications where these learning
techniques are used in a teacher-learner (or leader-follower)
setup.

In more detail, we consider the standard PI algorithm,
where the environment model is completely known and the
value function is directly computed. However, for the rea-
sons of computational convenience, we do introduce a modi-
fication into the policy improvement stage. Namely, the new
policy is computed as a soft-maximisation with respect to
the value function. This is done to support differentiabil-
ity of the policy with respect to the environment dynamics
necessary for numerical calculations to solve the resulting
TOP. However, this modification is relatively standard for
PI algorithms (see, for example [9] and references therein).
This is in part due to the fact that PI is frequently used in
combination with a form of neural-network computation to
represent either the policy or the value function, and in such
representations soft-max occurs naturally (see e.g. [3]). The
soft-max function we use is that of Gibbs-Boltzmann, which
is extensively used in neural-network computations, where
a vector v = (v1, ..., vk) is transformed into a normalised
vector σ(v|τ) proportional to (exp(τv1), ..., exp(τvk)). The
parameter τt denotes a so called temperature scale that shifts
the soft-max towards the greedy maximum selection, i.e. if
we let

lim
τ→∞

σ(v|τ) = σ∗,

then

σ∗
j �= 0 iff j ∈ arg max

1≤i≤k
vi.

Formally instantiating our learner’s state update F (xt, u)
by PI leads to the following set of equations:

Policy evaluation:

Vt(s) =
X
s′

Tut
(s′|s, πt−1(s))

ˆ
c(s′, πt−1(s), s) + γVt(s

′)
˜

Policy improvement:

πt(a|s) =
1

Zt(s)
exp

 
τt

X
s′

Tut
(s′|s, a)

ˆ
c(s′, a, s) + γVt(s

′)
˜!

Normalisation factor:

Zt(s) =
X

a

exp

 
τt

X
s′

Tut
(s′|s, a)

ˆ
c(s′, a, s) + γVt(s

′)
˜!

Substituting the above into the standard TOP formula-
tion leads to a TOP-PI optimisation problem depicted in
Figure 2.

4. EXPERIMENTAL DEMONSTRATION
The environment that the learning agent is facing in our ex-
periments is based on a type of transportation domain that,
in its general form, can represent a wide range of practi-
cal tasks from a real transportation route planning to the
manipulator motion planning for a robot. To better demon-
strate the properties and the performance of our teaching
method, rather than to deal with various intricacies of the

arg min
ut

tmaxP
t=1

P
s,a

πt(a|s)qt(s)D
KL
t (s, a)

s.t.
Vt(s) =

P
s′

Tut
(s′|s, πt−1(s)) [c(s′, πt−1(s), s) + γVt(s

′)]

πt(a|s) =
exp

 

τt

P

s′

Tut
(s′|s,a)[c(s′,a,s)+γVt(s

′)]
!

Zt(s)

Zt(s) =
P
a

exp

„
τt

P
s′

Tut
(s′|s, a) [c(s′, a, s) + γVt(s

′)]

«
π0 given

DKL
t (s, a) =

P
s′,a′

Tut
(s′|a, s)πt(a

′|s′) log
Tut

(s′|a,s)πt(a
′|s′)

T0(s′|a,s)π∗(a′|s′)

qt(s
′) =

P
s

T̃ut
(s′|s)qt(s)

T̃ut
(s′|s) =

P
a

Tut
(s′|s, a)πt(a|s)

Figure 2: TOP-PI: The complete TOP for the PI
learner

domain, we concentrate on a discrete version of the task.
Specifically, consider a learner agent that is tasked with find-
ing an optimal path for supply transportation between point
S and T on a grid. The learner’s reward is initially fixed to
be −1 for every step it takes plus some values RST and RTS

for reaching point T from S and vice versa. In a uniform
grid this would be a simple problem, however, the grid sim-
ulates a terrain and cells have an associated elevation. As a
result, any movement from one cell to another neighbouring
cell succeeds with a probability proportional to the relative
elevation of the cells. This way we can, for example, simu-
late and model the resistance presented by a real rugged or
mountain terrain to the efforts of a robot that attempts to
traverse it. From this point of view, consider, for instance,
the situation depicted in Figure 3.

G

B
C

D
E

F
S

T
H

Figure 3: Example of a 3D terrain grid.

If the cells are of equal elevation, the movement almost
always succeeds, in particular moving from cell B to cell
C in Figure 3 is practically certain. If the source cell of
the motion is lower than the target cell, then the motion
succeeds with low probability. Furthermore, in this case, a
non-zero probability exists that the direction of motion will
be altered. For example moving from H to E is unlikely to
succeed, and the agent may end up in D, F or even G, thus
representing a robot “stumbling” or “slipping” while trying
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to climb a steeply inclined slope. If the motion is directed to
states at lower elevation, it is most likely to succeed, but it
also has a certain non-negligible probability to move further
than intended. For example, moving from B to E is quite
likely to succeed, but the agent may end up in H or G just
as well, which would also be consistent with real motion on
a steep mountain slope.

As a result of this non-uniform, and potentially even non-
linear, response to actions, such an environment can create
complex dependencies between motion decisions at different
locations on the grid. Finding an optimal path of motion
from S to T and back, therefore, becomes non-trivial. Still,
if the probabilities of different transitions are given, the pol-
icy iteration algorithm can solve the problem. However, the
time it takes the algorithm to converge to an optimal pol-
icy may vary depending on how prominent the features of
the terrain are. Therefore it would be reasonable to assume
that scaling the terrain (and modifying transition probabil-
ities accordingly) during the initial iterations of learning, or
shaping the environment to “push” the agent in the right di-
rection will result in faster convergence to the optimal solu-
tion. Our experiments are directed to verify this proposition
using our TOP-PI formalism. Furthermore, to demonstrate
that the teacher can indeed cultivate a given behaviour to
the degree of actually enforcing it, we consider the situation
where the learner is required to follow a path different to
what would be optimal with respect to the environment’s
passive dynamics.

We begin our experimental verification by considering a
4× 4 grid world where the learner can move in any cardinal
direction or stay put. Each cell has a randomly assigned
elevation, shown in Figure 4, that modifies the dynamics of
each action as described above. The learner has a reward of
+1 for any actions ending in the target state and −1 other-
wise. This results in an optimal policy of heading toward the
target state in the shortest number of steps (see Figure 5).
The learner uses policy iteration to find a behaviour policy
that maximises the expected discounted sum of future re-
wards. The teacher can arbitrarily modify the underlying
dynamics of the environment.

Figure 4: The unmodified 3D terrain.

In our test environment, the information about the re-
ward state can take multiple iterations of the PI algorithm
to propagate to all other states. This leaves the learner to
make arbitrary guesses in early iterations. By using TOP-
PI, we found that the teacher was able to shape the dynamics
such that the agent is “pushed” in the appropriate direction

Figure 5: Original optimal policy of our test grid.
The shaded cell is the target state, with the policy
action to remain put.

from the beginning. Without the teacher modifying the dy-
namics, the learner required 4 iterations of PI to find the
optimal policy. With the addition of the teacher, the mod-
ified dynamics led the learner to follow the target policy in
3 iterations.

Figure 6: A target policy that avoids centre cells.

However, the significance of the teacher’s tweaks can be
better appreciated if we consider the fact that it can, in-
stead of facilitating, distort the learning process. Therefore,
we tested our TOP-PI solution in the situation where the re-
quired policy was different from the optimal trajectory in the
environment with passive dynamics. Specifically, we tasked
our algorithm to divert the PI learner from a simple shortest
path to the reward state to one that avoids the centre states
and follows the edge states to the goal (see Figure 6). Our
tests showed that this policy modification was indeed achiev-
able through the modifications, provided by the teacher, to
the environment dynamics. With the teacher using TOP-PI
on the new target policy, the learner found this new policy
using Policy Iteration in 4 iterations. This is the same time
it took to find the shortest path policy, in spite of the new
target policy being a distorted one. Although in these exper-
iments the tweaked dynamics were not computed based on
some underlying terrain, the tweaked dynamics of the final
policy iteration are visualised by a terrain impression shown
in Figure 7. Note the lowering of the two centre states fur-
thest from the target. This creates a “hole” that the learner
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Figure 7: An impression of the new terrain corre-
sponding to the modified dynamics at the final iter-
ation.

would wish to avoid as it would be difficult to exit. Also,
the upper-right centre square is the lowest to discourage the
learner from moving there should it fall in the hole. In this
domain, with a maximum number of policy iterations for
TOP-PI of 4, the modifications to the dynamics tended to
be relatively reasonable, with the average change in each en-
try of the environmental dynamics T ranging from 0.058 in
the first iteration to 0.036 in the final iteration. However,
the effort invested by the teacher can be better appreciated
with that of facilitating the shortest path problem. While
in our first experiment the cumulative KLR-based cost to
the teacher was 2.1495 units, the distorted policy required
7.1685 units of teaching effort.

We reduced the grid size to 2 × 2 to underline and throw
into a sharper relief the fact that this policy modification
method allows changes that are not possible with modifica-
tions to the reward function alone. In our test on a 2 × 2
grid, we changed the policy from a shortest path to a cir-
cular motion (see Figure 8), almost reversing the learner’s
motion tendencies under the passive environment dynamics.
On the other hand, consider the current state of the art in
the incentive based environment design, where reward aug-
mentation is parameterised by state. To achieve the required
circular policy by modifying the reward function, the reward
values must be strictly increasing along the path, otherwise
it would be optimal to remain put. By following the circular
motion, it is necessary for the reward in the upper-left state
to be less than the reward for the lower right (target) state.
As a result the optimal action for lower-left state would in-
evitably be to move right rather than up, thus failing to
induce the required circular motion. However, as we have
demonstrated, tweaking the dynamics allows such a policy
modification.

Figure 8: The original optimal policy (left) and tar-
get policy (right).

Our experiments provided experimental verification of our

proposed behaviour cultivation teaching method. In partic-
ular, We verified that the method can be used both to speed
up the learning process and to lead it towards a required
strategy by applying our method to the Policy Iteration algo-
rithm. We have confirmed the efficacy of our method in the
situation where the teacher’s interest contradicts, or other-
wise interferes, with the interests of the learner by requiring
it to cultivate a behaviour significantly different from that
which is optimal under the passive environment dynamics.
Importantly, we have constructed a teacher-learner task that
can not be addressed by other available teaching methods.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a novel interaction frame-
work between a teacher and a learner agent. Unlike previous
developments in this area, in our framework the teacher in-
fluences the learner indirectly by modifying the environment
away from some normative, passive dynamics. We term this
process behaviour cultivation.

Our approach completes the polytomy of feasible teacher-
learner interactions, forming a rigorously studied triad: by
demonstration, by incentive, and by behaviour cultivation.
Although the latter two can be unified under the umbrella of
environment design [20], with some of the ideology tracing
back to Hammond and Converse [4], the members of the
teaching triad are, in fact, distinct. Furthermore, while the
difference in their mathematical formalism can be seen as an
outcome of some representation convenience, the diversity
in their applicability argues that each of them is irrevocably
necessary.

In particular, we have provided an experimental domain
that could not be addressed by neither demonstration (be-
cause the teacher’s and the learner’s interests in the task
contradict) nor currently available incentive based methods
(because incentives created a reasoning paradox in the task),
but was successfully resolved using our behaviour cultivation
teaching method. In general, as an important part of our fu-
ture work we see the classification of various teacher-learner
tasks into groups that are more suitable for a particular
teaching method.

Although in this paper we provide an example based on
a learner executing the policy iteration (PI) algorithm, this
limitation is not a part of our Teacher Optimisation Prob-
lem (TOP) framework. Rather it is a particular instanti-
ation of its principles for the PI algorithm. We hope that
the wide applicability of PI-type algorithms will allow for a
faster adoption of our behaviour cultivation method by the
multi-agent systems research community. As part of our on-
going research we will investigate the instantiations of TOP
with other learning algorithms, particularly those capable of
knowledge transfer [17, 16].

The cost and the effectiveness of the teaching process in
TOP can be measured simultaneously via the Kullback-
Leibler divergence rate (KLR). Specifically, by measuring
the KLR between two state-action processes engendered by
the learner’s action policy and the environment dynamics set
by the teacher. The detailed choice of the two processes de-
pends on the interpretation of this cost. One such interpre-
tation, as the effort it takes to sustain the teaching process at
any given time, is adopted in this paper. As a result the cost
is the KLR between the current policy-environment combi-
nation and the combination of the reference policy with the
passive dynamics.
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Although ideologically this choice of the cost function is
similar to works by Todorov [18, 19], its integration with the
interaction model is different. Furthermore, we use KL rate,
rather than KL divergence used by Todorov. This allows
us to focus on the long term divergence between the two
processes, which is consistent with our Assumption 1 that
the learner seeks best response to the long term effects of
the augmented environment dynamics.

Notably, however, there are several more important and
interesting cost interpretations. For instance, as a part of
our ongoing and future work, we will explore an interpreta-
tion as the total effort invested into the teaching process. In
this case the KLR will be between two consecutive policy-
environment combinations plus some final cost expressed by
the KLR between the final policy-environment pair and the
combination of the reference policy with the passive envi-
ronment dynamics.
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